Fragmentation of bubbles in turbulence by small eddies

Yinghe Qi

Noah Corbitt, Carl Urbanik, Shiyong Tan, Ashwanth Salibindla, Rui Ni

Department of Mechanical Engineering
Johns Hopkins University

Fragmentation in turbulence

Breaking wave

The state of the

Fragmentation → Size spectrum —

Interfacial area (mass transfer)
Rise velocity (lifetime)
Dispersion

Villermaux *Annu. Rev. Fluid Mech.* (2007) Enders, et al. *Marine pollution bulletin* (2015) Li, C., et al. J. Geophys. Res.: Oceans 122.10 (2017): 7938-7957.

Dean & Stokes. Nature. (2002)

Kolmogorov-Hinze (KH) framework

Kolmogorvo 1949; Hinze 1955;

Basic assumption: bubble is broken by the eddy with similar size

KH theory --> bubble size is the only scale in the breakup problem

$$We = \frac{\rho u^2 D}{\sigma} \sim \frac{\rho(\epsilon D)^{2/3} D}{\sigma} = \frac{\rho \epsilon^{2/3} D^{5/3}}{\sigma}$$

We > 1, breakups happen.

The critical Weber number We_{cr} $We_{cr} \sim [0.59, 7.8]$

Large eddies only advect the bubble without deforming it

Small eddies effect can be filter by the bubble

Is this right?
Can we ignore small eddy contribution?

Sevik & Park 1973; Deane & Stokes 2002; Martinez-Bazan et al.1999; Risso & Fabre 1998

Introduction to the vortex ring collision

McKeown et al. 2018, PRF

Instability leads to two stages
From large scale to small scale

credit: Rodolfo Ostilla Monico (University of Houston)

Experimental setup

Linear actuator, syringe pump and cameras are all synchronized.

Tan et al. 2020., Mausk et al. 2019.

From large to small scale

Bubble breakup modes

Primary breakup (slow and moderate)

$$t_c = 34 \text{ ms}$$

Secondary breakup (rapid and violent)

$$t_c = 5 \text{ ms}$$

Can KH theory explain this?

Weber number (Kolmogorov-Hinze)

Weber number around the bubble

Secondary breakups generally have smaller weber number

Secondary breakups are more violent. Expect larger Weber number

Flow around the bubble

How to improve KH framework

 $\langle u'^2 \rangle \ (\mathrm{m}^2/\mathrm{s}^2)$

A new breakup model

Stress criterion:

$$\rho u_e^2 > \sigma/D_e$$

Time criterion:

$$D_e/u_e~<2\pi\sqrt{\rho D^3/96\sigma}$$

$$\begin{cases} \frac{\rho u_e^2 D_e}{\sigma} > 1\\ \frac{\rho u_e^2 D^3 / D_e^2}{\sigma} > \frac{96}{4\pi^2} \end{cases}$$

Minimum eddy velocity required to break a bubble

$$u_{e,min}(D_e, D) = \max\left(\sqrt{\frac{\sigma}{\rho D_e}}, \sqrt{\frac{96}{4\pi} \frac{\sigma}{\rho D^3/D_e^2}}\right)$$

Eddy contribution

Distribution of dissipation rate
$$P(\epsilon_e) = \frac{1}{\epsilon_e} \frac{1}{\sqrt{2\pi\sigma_{\ln\epsilon}^2}} \exp\left[-\frac{\left(\ln\left(\epsilon_e/\langle\epsilon\rangle\right) + \sigma_{\ln\epsilon}^2/2\right)^2}{2\sigma_{\ln\epsilon}^2}\right]$$

Distribution of eddy velocity

$$P(u_e|D_e) = \frac{3\sqrt{2}}{2}\epsilon_e^{2/3}D_e^{-1/3}P(\epsilon_e)$$

Considering collision frequency

Sub-bubble-scale eddies are more important for bubble fragmentation.

Meneveau & Sreenivasan 1991 Kolmogorov 1962

Our experiment (vortex ring collision)

Fully-developed turbulence

- \bigcirc Exp, $D \approx 2 \text{ mm}$
- \Diamond Exp, $D \approx 2.5 \text{ mm}$
- \square Exp, $D \approx 3 \text{ mm}$
- \triangle Exp, $D \approx 3.7 \text{ mm}$
- ∇ Exp, $D \approx 4.6 \text{ mm}$
- Kolmogorov-Hinze framework
- -Model, D=2 mm
- --Model, D=3 mm
- -- Model, D = 4 mm

Vejrazka et al. 2018

Summary

- Vortex ring collision provides a magic knife to separate different eddy scale
- Secondary breakups with smaller Weber number exhibit violent breakup mode
- Sub-bubble scale eddies play an important role in breakups
- A new bubble breakup model is proposed considering the eddy scale

